Image Quality Assessment Based on Intrinsic Mode Function Coefficients Modeling

نویسندگان

  • Abdelkaher Ait Abdelouahad
  • Mohammed El Hassouni
  • Hocine Cherifi
  • Driss Aboutajdine
چکیده

Reduced reference image quality assessment (RRIQA) methods aim to assess the quality of a perceived image with only a reduced cue from its original version, called ”reference image”. The powerful advantage of RR methods is their ”General-purpose”. However, most introduced RR methods are built upon a non-adaptive transform models. This can limit the scope of RR methods to a small number of distortion types. In this work, we propose a bi-dimensional empirical mode decomposition-based RRIQA method. First, we decompose both, reference and distorted images, into Intrinsic Mode Functions (IMF), then we use the Generalized Gaussian Density (GGD) to model IMF coefficients. Finally, the distortion measure is computed from the ”fitting errors”, between the empirical and the theoretical IMF histograms, using the Kullback Leibler Divergence (KLD). In order to evaluate the performance of the proposed method, two approaches have been investigated : the logistic function-based regression and the well known Support vector machine-based classification. Experimental results show a high correlation between objective and subjective scores.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Image Distortion Measure Based on Natural Scene Statistics Modeling

In the field of Image Quality Assessment (IQA), this paper examines a Reduced Reference (RRIQA) measure based on the bi-dimensional empirical mode decomposition. The proposed measure belongs to Natural Scene Statistics (NSS) modeling approaches. First, the reference image is decomposed into Intrinsic Mode Functions (IMF); the authors then use the Generalized Gaussian Density (GGD) to model IMF ...

متن کامل

A Robust SAR NLFM Waveform Selection Based on the Total Quality Assessment Techniques

Design, simulation and optimal selection of cosine-linear frequency modulation waveform (CNLFM) based on correlated ambiguity function (AF) method for the purpose of Synthetic Aperture Radar (SAR) is done in this article. The selected optimum CNLFM waveform in contribution with other waveforms are applied directly into a SAR image formation algorithm (IFA) and their quality effects performance ...

متن کامل

Block-Based Compressive Sensing Using Soft Thresholding of Adaptive Transform Coefficients

Compressive sampling (CS) is a new technique for simultaneous sampling and compression of signals in which the sampling rate can be very small under certain conditions. Due to the limited number of samples, image reconstruction based on CS samples is a challenging task. Most of the existing CS image reconstruction methods have a high computational complexity as they are applied on the entire im...

متن کامل

Improved image quality in pinhole SPECT by accurate modeling of the point spread function in low magnification systems.

PURPOSE Single photon emission computed tomography (SPECT) has become an important noninvasive imaging technique in small-animal research. Due to the high resolution required in small-animal SPECT systems, the spatially variant system response needs to be included in the reconstruction algorithm. Accurate modeling of the system response should result in a major improvement in the quality of rec...

متن کامل

Visual Perception Based Objective Stereo Image Quality Assessment for 3D Video Communication

Stereo image quality assessment is a crucial and challenging issue in 3D video communication. One of major difficulties is how to weigh binocular masking effect. In order to establish the assessment mode more in line with the human visual system, Watson model is adopted, which defines visibility threshold under no distortion composed of contrast sensitivity, masking effect and error in this stu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011